Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Pract Thromb Haemost ; 7(6): 102164, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37680312

RESUMO

Background: Patients with COVID-19 have a higher risk of thrombosis and thromboembolism, but the underlying mechanism(s) remain to be fully elucidated. In patients with COVID-19, high lipoprotein(a) (Lp(a)) is positively associated with the risk of ischemic heart disease. Lp(a), composed of an apoB-containing particle and apolipoprotein(a) (apo(a)), inhibits the key fibrinolytic enzyme, tissue-type plasminogen activator (tPA). However, whether the higher Lp(a) associates with lower tPA activity, the longitudinal changes of these parameters in hospitalized patients with COVID-19, and their correlation with clinical outcomes are unknown. Objectives: To assess if Lp(a) associates with lower tPA activity in COVID-19 patients, and how in COVID-19 populations Lp(a) and tPA change post infection. Methods: Endogenous tPA enzymatic activity, tPA or Lp(a) concentration were measured in plasma from hospitalized patients with and without COVID-19. The association between plasma tPA and adverse clinical outcomes was assessed. Results: In hospitalized patients with COVID-19, we found lower tPA enzymatic activity and higher plasma Lp(a) than that in non-COVID-19 controls. During hospitalization, Lp(a) increased and tPA activity decreased, which associates with mortality. Among those who survived, Lp(a) decreased and tPA enzymatic activity increased during recovery. In patients with COVID-19, tPA activity is inversely correlated with tPA concentrations, thus, in another larger COVID-19 cohort, we utilized plasma tPA concentration as a surrogate to inversely reflect tPA activity. The tPA concentration was positively associated with death, disease severity, plasma inflammatory, and prothrombotic markers, and with length of hospitalization among those who were discharged. Conclusion: High Lp(a) concentration provides a possible explanation for low endogenous tPA enzymatic activity, and poor clinical outcomes in patients with COVID-19.

2.
Science ; 381(6661): eadh5207, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37651538

RESUMO

Apolipoprotein B (apoB)-lipoproteins initiate and promote atherosclerotic cardiovascular disease. Plasma tissue plasminogen activator (tPA) activity is negatively associated with atherogenic apoB-lipoprotein cholesterol levels in humans, but the mechanisms are unknown. We found that tPA, partially through the lysine-binding site on its Kringle 2 domain, binds to the N terminus of apoB, blocking the interaction between apoB and microsomal triglyceride transfer protein (MTP) in hepatocytes, thereby reducing very-low-density lipoprotein (VLDL) assembly and plasma apoB-lipoprotein cholesterol levels. Plasminogen activator inhibitor 1 (PAI-1) sequesters tPA away from apoB and increases VLDL assembly. Humans with PAI-1 deficiency have smaller VLDL particles and lower plasma levels of apoB-lipoprotein cholesterol. These results suggest a mechanism that fine-tunes VLDL assembly by intracellular interactions among tPA, PAI-1, and apoB in hepatocytes.


Assuntos
Apolipoproteínas B , Aterosclerose , Hepatócitos , Lipoproteínas VLDL , Inibidor 1 de Ativador de Plasminogênio , Ativador de Plasminogênio Tecidual , Humanos , Apolipoproteínas B/sangue , Aterosclerose/sangue , Aterosclerose/metabolismo , Hepatócitos/metabolismo , Lipoproteínas VLDL/metabolismo , Inibidor 1 de Ativador de Plasminogênio/sangue , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL
3.
Best Pract Res Clin Haematol ; 35(3): 101386, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36494155

RESUMO

Reports of racial and ethnic disparities regarding both rates of infection of the SARS-CoV-2 virus and morbidity of the coronavirus disease-19 (COVID-19) contain profound differences depending on the population. Our previous study has shown that patients with COVID-19 who developed hypertriglyceridemia during hospitalization have a 2.3 times higher mortality rate. However, whether the correlation between hypertriglyceridemia and mortality has disparity among different racial and ethnic groups is unknown. In this study, we investigated the impact of race/ethnicity on the correlation between hypertriglyceridemia and mortality in hospitalized patients with COVID-19. De-identified information from 904 hospitalized patients diagnosed with COVID-19 between March 2020 and June 2021 were extracted from the Medical College of Wisconsin Clinical Data Warehouse. A multivariable regression analysis suggested that the Asians and non-White Hispanics had 4 or 3.9 times higher mortality rate, respectively, after adjusting for age, morbid obesity (BMI ≥40), and gender. The hypertriglyceridemia (≥150 mg/dL) was associated with higher mortality, after adjusting for age, gender, and morbid obesity. The baseline hypertriglyceridemia occurrence had relevantly more consistent percentages among all racial/ethnic groups. However, non-White Hispanic and Asian patients had the highest frequencies of peak hypertriglyceridemia occurrence during hospitalization. The peak hypertriglyceridemia developed during hospitalization correlates with the incidence of thrombosis after adjusting for morbid obesity, age, and sex. In summary, in this retrospective study of 904 hospitalized COVID-19 patients, Asians and non-White Hispanics had a greater likelihood of developing hypertriglyceridemia during hospitalization and mortality than White patients.


Assuntos
COVID-19 , Obesidade Mórbida , Humanos , Estados Unidos , SARS-CoV-2 , Estudos Retrospectivos , População Branca , Negro ou Afro-Americano
4.
J Clin Lipidol ; 15(5): 724-731, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34470719

RESUMO

BACKGROUND: Alteration in blood triglyceride levels have been found in patients with coronavirus disease 2019 (COVID-19). However, the association between hypertriglyceridemia and mortality in COVID-19 patients is unknown. OBJECTIVE: To investigate the association between alteration in triglyceride level and mortality in hospitalized COVID-19 patients. METHODS: We conducted a retrospective study of 600 hospitalized patients with COVID-19 diagnosis (ICD10CM:U07.1) and/or SARS-CoV-2 positive testing results between March 1, 2020 and December 21, 2020 at a tertiary academic medical center in Milwaukee, Wisconsin. De-identified data, including demographics, medical history, and blood triglyceride levels were collected and analyzed. Of the 600 patients, 109 patients died. The triglyceride value on admission was considered the baseline and the peak was defined as the highest level reported during the entire period of hospitalization. Hypertriglyceridemia was defined as greater than 150 mg/dl. Logistic regression analyses were performed to evaluate the association between hypertriglyceridemia and mortality. RESULTS: There was no significant difference in baseline triglyceride levels between non-survivors (n = 109) and survivors (n = 491) [Median 127 vs. 113 mg/dl, p = 0.213]. However, the non-survivors had significantly higher peak triglyceride levels during hospitalization [Median 179 vs. 134 mg/dl, p < 0.001]. Importantly, hypertriglyceridemia independently associated with mortality [odds ratio=2.3 (95% CI: 1.4-3.7, p = 0.001)], after adjusting for age, gender, obesity, history of hypertension and diabetes, high CRP, high leukocyte count and glucocorticoid treatment in a multivariable logistic regression model. CONCLUSIONS: Hypertriglyceridemia during hospitalization is independently associated with 2.3 times higher mortality in COVID-19 patients. Prospective studies are needed to independently validate this retrospective analysis.


Assuntos
COVID-19/sangue , COVID-19/mortalidade , Hipertrigliceridemia/sangue , Hipertrigliceridemia/fisiopatologia , Idoso , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
5.
Pregnancy Hypertens ; 24: 126-134, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33971615

RESUMO

Preeclampsia (PE) is a disorder of pregnancy, which is categorized by hypertension and proteinuria or signs of end-organ damage. Though PE is the leading cause of maternal and fetal morbidity and mortality, the mechanisms leading to PE remain unclear. The present study examined the contribution of dietary protein source (casein versus wheat gluten) to the risk of developing maternal syndrome utilizing two colonies of Dahl salt-sensitive (SS/JrHsdMcwi) rats. While the only difference between the colonies is the diet, the colonies exhibit profound differences in the pregnancy phenotypes. The SS rats maintained on the wheat gluten (SSWG) chow are protected from developing maternal syndrome; however, approximately half of the SS rats fed a casein-based diet (SSC) exhibit maternal syndrome. Those SSC rats that develop pregnancy-specific increases in blood pressure and proteinuria have no observable differences in renal or placental immune profiles compared to the protected SS rats. A gene profile array of placental tissue revealed a downregulation in Nos3 and Cyp26a1 in the SSC rats that develop maternal syndrome accompanied with increases in uterine artery resistance index suggesting the source of this phenotype could be linked to inadequate remodeling within the placenta. Investigations into the effects of multiple pregnancies on maternal health replicated similar findings. The SSC colony displayed an exacerbation in proteinuria, renal hypertrophy and renal immune cell infiltration associated with an increased mortality rate while the SSWG colony were protected highlighting how dietary protein source could have beneficial effects in PE.


Assuntos
Proteínas na Dieta/farmacologia , Nefropatias/fisiopatologia , Rim/fisiopatologia , Albuminúria/fisiopatologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Caseínas/farmacologia , Gorduras na Dieta/farmacologia , Proteínas na Dieta/metabolismo , Grão Comestível/química , Feminino , Glutens/farmacologia , Hipertensão/fisiopatologia , Óxido Nítrico Sintase Tipo III , Pré-Eclâmpsia/fisiopatologia , Gravidez , Ratos , Ratos Endogâmicos Dahl , Ácido Retinoico 4 Hidroxilase
6.
Acta Physiol (Oxf) ; 232(4): e13662, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33866692

RESUMO

AIM: Our previous studies have demonstrated the importance of dietary factors in the determination of hypertension in Dahl salt-sensitive (SS) rats. Since the gut microbiota has been implicated in chronic diseases like hypertension, we hypothesized that dietary alterations shift the microbiota to mediate the development of salt-sensitive hypertension and renal disease. METHODS: This study utilized SS rats from the Medical College of Wisconsin (SS/MCW) maintained on a purified, casein-based diet (0.4% NaCl AIN-76A, Dyets) and from Charles River Laboratories (SS/CRL) fed a whole grain diet (0.75% NaCl 5L79, LabDiet). Faecal 16S rDNA sequencing was used to phenotype the gut microbiota. Directly examining the contribution of the gut microbiota, SS/CRL rats were administered faecal microbiota transfer (FMT) experiments with either SS/MCW stool or vehicle (Vehl) in conjunction with the HS AIN-76A diet. RESULTS: SS/MCW rats exhibit renal damage and inflammation when fed high salt (HS, 4.0% NaCl AIN-76A), which is significantly attenuated in SS/CRL. Gut microbiota phenotyping revealed distinct profiles that correlate with disease severity. SS/MCW FMT worsened the SS/CRL response to HS, evidenced by increased albuminuria (67.4 ± 6.9 vs 113.7 ± 25.0 mg/day, Vehl vs FMT, P = .007), systolic arterial pressure (158.6 ± 5.8 vs 177.8 ± 8.9 mmHg, Vehl vs FMT, P = .09) and renal T-cell infiltration (1.9-fold). Amplicon sequence variant (ASV)-based analysis of faecal 16S rDNA sequencing data revealed taxa that significantly shifted with FMT: Erysipelotrichaceae_2, Parabacteroides gordonii, Streptococcus alactolyticus, Bacteroidales_1, Desulfovibrionaceae_2, Ruminococcus albus. CONCLUSIONS: These data demonstrate that dietary modulation of the gut microbiota directly contributes to the development of Dahl SS hypertension and renal injury.


Assuntos
Microbioma Gastrointestinal , Hipertensão , Animais , Bacteroidetes , Pressão Sanguínea , Dieta , Rim , Ratos , Ratos Endogâmicos Dahl , Ruminococcus , Cloreto de Sódio , Cloreto de Sódio na Dieta , Streptococcus
7.
Hypertension ; 77(1): 228-240, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33249861

RESUMO

Genomic sequence and gene expression association studies in animals and humans have identified genes that may be integral in the pathogenesis of various diseases. CD14 (cluster of differentiation 14)-a cell surface protein involved in innate immune system activation-is one such gene associated with cardiovascular and hypertensive disease. We previously showed that this gene is upregulated in renal macrophages of Dahl salt-sensitive animals fed a high-salt diet; here we test the hypothesis that CD14 contributes to the elevated pressure and renal injury observed in salt-sensitive hypertension. Using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9), we created a targeted mutation in the CD14 gene on the Dahl SS (SS/JrHSDMcwi) background and validated the absence of CD14 peptides via mass spectrometry. Radiotelemetry was used to monitor blood pressure in wild-type and CD14-/- animals challenged with high salt and identified infiltrating renal immune cells via flow cytometry. Germline knockout of CD14 exacerbated salt-sensitive hypertension and renal injury in female animals but not males. CD14-/- females demonstrated increased infiltrating macrophages but no difference in infiltrating lymphocytes. Transplant of CD14+/+ or CD14-/- bone marrow was used to isolate the effects of CD14 knockout to hematopoietic cells and confirmed that the differential phenotype observed was due to knockout of CD14 in hematopoietic cells. Ovariectomy was used to remove the influence of female sex hormones, which completely abrogated the effect of CD14 knockout. These studies provide a novel treatment target and evidence of a new dichotomy in immune activation between sexes within the context of hypertensive disease where CD14 regulates immune cell activation and renal injury.


Assuntos
Hipertensão/imunologia , Rim/patologia , Receptores de Lipopolissacarídeos/fisiologia , Caracteres Sexuais , Injúria Renal Aguda , Animais , Estradiol/fisiologia , Feminino , Hipertensão/complicações , Receptores de Lipopolissacarídeos/genética , Masculino , Ratos , Ratos Endogâmicos Dahl
8.
Exp Physiol ; 105(5): 864-875, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32034948

RESUMO

NEW FINDINGS: What is the central question of this study? Recruitment of immune cells to the kidney potentiates hypertensive pathology, but more refined methods are needed to assess these cells functionally. Adoptive transfer studies of immune cells have been limited in rat models and especially in the study of salt-sensitive hypertension. We tested the hypothesis that splenocyte transfer into T-cell-deficient rats is sufficient to exacerbate salt-sensitive hypertension. What is the main finding and its importance? We demonstrate that transfer of splenocytes into T-cell-deficient animals exacerbates salt-sensitive hypertension, and an enrichment in the CD4+ compartment specifically induces this phenomenon. ABSTRACT: Increasing evidence of immune system activation during the progression of hypertension and renal injury has led to a need for new methods to study individual cell types. Transfer of immune cells serves as a powerful tool to isolate effects of specific subsets. Transfer studies in Rag1-/- mice have demonstrated an important role of T-cell activation in hypertension, but this approach has yielded limited success in rat models. Using the T-cell-deficient Dahl salt-sensitive (SS) rat, SSCD247-/- , we hypothesized that splenocyte transfer from SS wild-type animals into SSCD247-/- animals would populate the T-cell compartment. The Dahl SS background provides a model for studying salt-sensitive hypertension; therefore, we also tested whether the dietary salt content of the donor would confer differential salt sensitivity in the recipient. To test this, donors were maintained on either a low-salt or a high-salt diet, and at postnatal day 5 the recipients received splenocyte transfer from one of these groups before a high-salt diet challenge. We showed that splenocyte transfer elevated blood pressures while rats were fed low salt and exacerbated the salt-sensitive increase in pressure when they were fed fed high salt. Furthermore, transfer of splenocytes conferred exacerbated renal damage. Lastly, we confirmed the presence of T cells in the circulation and in the spleen, and that infiltration of immune cells, including T cells, macrophages and B cells, into the kidney was elevated in those receiving the transfer. Interestingly, the source of the splenocytes, from donors fed either a low-salt or a high-salt diet, did not significantly affect these salt-sensitive phenotypes.


Assuntos
Hipertensão/patologia , Nefropatias/fisiopatologia , Cloreto de Sódio na Dieta/efeitos adversos , Baço/citologia , Animais , Pressão Sanguínea , Transplante de Células/efeitos adversos , Modelos Animais de Doenças , Progressão da Doença , Masculino , Ratos , Ratos Endogâmicos Dahl , Baço/transplante , Linfócitos T
9.
Hypertension ; 75(2): 372-382, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31838911

RESUMO

The SS (Dahl salt sensitive) rat is an established model of hypertension and renal damage that is accompanied with immune system activation in response to a high-salt diet. Investigations into the effects of sodium-independent and dependent components of the diet were shown to affect the disease phenotype with SS/MCW (JrHsdMcwi) rats maintained on a purified diet (AIN-76A) presenting with a more severe phenotype relative to grain-fed SS/CRL (JrHsdMcwiCrl) rats. Since contributions of the immune system, environment, and diet are documented to alter this phenotype, this present study examined the epigenetic profile of T cells isolated from the periphery and the kidney from these colonies. T cells isolated from kidneys of the 2 colonies revealed that transcriptomic and functional differences may contribute to the susceptibility of hypertension and renal damage. In response to high-salt challenge, the methylome of T cells isolated from the kidney of SS/MCW exhibit a significant increase in differentially methylated regions with a preference for hypermethylation compared with the SS/CRL kidney T cells. Circulating T cells exhibited similar methylation profiles between colonies. Utilizing transcriptomic data from T cells isolated from the same animals upon which the DNA methylation analysis was performed, a predominant negative correlation was observed between gene expression and DNA methylation in all groups. Lastly, inhibition of DNA methyltransferases blunted salt-induced hypertension and renal damage in the SS/MCW rats providing a functional role for methylation. This study demonstrated the influence of epigenetic modifications to immune cell function, highlighting the need for further investigations.


Assuntos
Pressão Sanguínea/fisiologia , Metilação de DNA/genética , Epigênese Genética , Hipertensão/genética , Cloreto de Sódio na Dieta/efeitos adversos , Linfócitos T/metabolismo , Animais , Modelos Animais de Doenças , Hipertensão/imunologia , Hipertensão/fisiopatologia , Masculino , Fenótipo , Ratos , Ratos Endogâmicos Dahl , Linfócitos T/imunologia
10.
Free Radic Biol Med ; 146: 333-339, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31730933

RESUMO

Previous studies utilizing the SSp67phox-/- rat have demonstrated the importance of systemic NADPH oxidase NOX2-derived reactive oxygen species (ROS) production in the pathogenesis of Dahl Salt-Sensitive (SS) hypertension and renal damage. It is established that the immune system contributes to the development of SS hypertension and our laboratory has observed an enrichment of NOX2 subunits in infiltrating T cells. However, the contribution of immune cell-derived ROS in SS hypertension remains unknown. To assess the role of ROS in immune cells, SSp67phox-/- rats underwent total body irradiation and received bone marrow transfer from either SS (+SS) or SSp67phox-/- (+SSp67phox-/-) donor rats. Demonstrated in a respiratory burst assay, response to phorbol 12-myristate 13-acetate stimulus (135 µM) was 10.2-fold greater in peritoneal macrophages isolated from +SS rats compared to nonresponsive + SSp67phox-/- cells, validating that + SS rats were capable of producing NOX2-derived ROS in cells of hematopoietic origin. After 3 weeks of high salt challenge, there was an exacerbated increase in mean arterial pressure in +SS rats compared to + SSp67phox-/- control rats (176.1 ± 4.7 vs 147.9 ± 8.4 mmHg, respectively), which was accompanied by a significant increase in albuminuria (168.3 ± 23.7 vs 107.0 ± 20.4 mg/day) and renal medullary protein cast formation (33.2 ± 4.7 vs 8.1 ± 3.5%). Interestingly, upon analysis of renal immune cells, there was trending increase of CD11b/c + monocytes and macrophages in the kidney of +SS rats (4.7 ± 0.4 vs 3.5 ± 0.5 × 106 cells/kidney, +SS vs + SSp67phox-/-, p = 0.06). These data altogether demonstrate that immune cell production of NOX2-derived ROS is sufficient to exacerbate Dahl SS hypertension, renal damage, and renal inflammation.


Assuntos
Hipertensão , Cloreto de Sódio na Dieta , Animais , Pressão Sanguínea , Rim , Ratos , Ratos Endogâmicos Dahl , Espécies Reativas de Oxigênio , Cloreto de Sódio na Dieta/efeitos adversos
11.
Hypertension ; 74(4): 854-863, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31476910

RESUMO

The Dahl salt-sensitive (SS) rat is an established model of SS hypertension and renal damage. In addition to salt, other dietary components were shown to be important determinants of hypertension in SS rats. With previous work eliminating the involvement of genetic differences, grain-fed SS rats from Charles River Laboratories (SS/CRL; 5L2F/5L79) were less susceptible to salt-induced hypertension and renal damage compared with purified diet-fed SS rats bred at the Medical College of Wisconsin (SS/MCW; 0.4% NaCl, AIN-76A). With the known role of immunity in hypertension, the present study characterized the immune cells infiltrating SS/MCW and SS/CRL kidneys via flow cytometry and RNA sequencing in T-cells isolated from the blood and kidneys of rats maintained on their respective parental diet or on 3 weeks of high salt (4.0% NaCl, AIN-76A). SS/CRL rats were protected from salt-induced hypertension (116.5±1.2 versus 141.9±14.4 mm Hg), albuminuria (21.7±3.5 versus 162.9±22.2 mg/d), and renal immune cell infiltration compared with SS/MCW. RNA-seq revealed >50% of all annotated genes in the entire transcriptome to be significantly differentially expressed in T-cells isolated from blood versus kidney, regardless of colony or chow. Pathway analysis of significantly differentially expressed genes between low and high salt conditions demonstrated changes related to inflammation in SS/MCW renal T-cells compared with metabolism-related pathways in SS/CRL renal T-cells. These functional and transcriptomic T-cell differences between SS/MCW and SS/CRL show that dietary components in addition to salt may influence immunity and the infiltration of immune cells into the kidney, ultimately impacting susceptibility to salt-induced hypertension and renal damage.


Assuntos
Pressão Sanguínea/fisiologia , Hipertensão/patologia , Rim/patologia , Cloreto de Sódio na Dieta/farmacologia , Linfócitos T/metabolismo , Transcriptoma , Animais , Pressão Sanguínea/efeitos dos fármacos , Citometria de Fluxo , Hipertensão/metabolismo , Rim/metabolismo , Masculino , Ratos , Ratos Endogâmicos Dahl
12.
Am J Physiol Renal Physiol ; 317(2): F361-F374, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31215801

RESUMO

Studies of Dahl salt-sensitive (SS) rats have shown that renal CD3+ T cells and ED-1+ macrophages are involved in the development of salt-sensitive hypertension and renal damage. The present study demonstrated that the increase in renal immune cells, which accompanies renal hypertrophy and albuminuria in high-salt diet-fed Dahl SS rats, is absent in Sprague-Dawley and SSBN13 rats that are protected from the SS disease phenotype. Flow cytometric analysis demonstrated that >70% of the immune cells in the SS kidney are M1 macrophages. PCR profiling of renal myeloid cells showed a salt-induced upregulation in 9 of 84 genes related to Toll-like receptor signaling, with notable upregulation of the Toll-like receptor 4/CD14/MD2 complex. Because of the prominent increase in macrophages in the SS kidney, we used liposome-encapsulated clodronate (Clod) to deplete macrophages and assess their contribution to salt-sensitive hypertension and renal damage. Dahl SS animals were administered either Clod-containing liposomes (Clod-Lipo), Clod, or PBS-containing liposomes as a vehicle control. Clod-Lipo treatment depleted circulating and splenic macrophages by ∼50%; however, contrary to our hypothesis, Clod-Lipo-treated animals developed an exacerbated salt-sensitive response with respect to blood pressure and albuminuria, which was accompanied by increased renal T and B cells. Interestingly, those treated with Clod also demonstrated an exacerbated phenotype, but it was less severe than Clod-Lipo-treated animals and independent of changes to the number of renal immune cells. Here, we have shown that renal macrophages in Dahl SS animals sustain a M1 proinflammatory phenotype in response to increased dietary salt and highlighted potential adverse effects of Clod-Lipo macrophage depletion.


Assuntos
Albuminúria/imunologia , Hipertensão/imunologia , Nefropatias/imunologia , Rim/imunologia , Macrófagos/imunologia , Cloreto de Sódio na Dieta , Albuminúria/etiologia , Albuminúria/metabolismo , Albuminúria/patologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Ácido Clodrônico/toxicidade , Modelos Animais de Doenças , Progressão da Doença , Hipertensão/etiologia , Hipertensão/metabolismo , Hipertensão/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Nefropatias/etiologia , Nefropatias/metabolismo , Nefropatias/patologia , Receptores de Lipopolissacarídeos/metabolismo , Antígeno 96 de Linfócito/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Fenótipo , Ratos Endogâmicos BN , Ratos Endogâmicos Dahl , Ratos Sprague-Dawley , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Receptor 4 Toll-Like/metabolismo
13.
Am J Physiol Regul Integr Comp Physiol ; 317(1): R182-R189, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31166692

RESUMO

Based on previous studies suggesting a role of renal nerves in renal inflammation, the present studies were performed to test the hypothesis that renal nerves mediate renal damage in Dahl salt-sensitive (SS) hypertension by increasing renal leukocyte infiltration. Experiments were performed in Dahl SS rats with bilateral renal denervation (RDN) and bilateral sham operation (n = 10 or 11 per group) and with unilateral RDN and contralateral sham operation (n = 10). After denervation, rats were switched from a low-salt 0.4% NaCl (LS) diet to a high-salt 4% NaCl (HS) diet and maintained on HS diet for 21 days. Bilateral RDN reduced the magnitude of hypertension assessed by radiotelemetry in Dahl SS rats compared with sham-operated rats (mean arterial pressure 140.9 ±4.8 mmHg and 159.7 ± 3.5 mmHg, respectively) and reduced proteinuria at day 21 of HS diet. However, assessment of renal leukocyte infiltration demonstrated no significant effect of bilateral RDN on the number of infiltrating leukocytes (RDN 3.6 ± 0.5 × 106 vs. sham operated 4.3 ± 0.3 × 106 CD45+ cells) or any of the subsets examined by flow cytometry. The unilateral RDN experiment showed no effect of RDN on the renal infiltration of leukocytes (RDN 6.5 ± 0.9 × 106 vs. sham operated 6.1 ± 1.1 × 106 CD45+ cells/kidney) or renal damage in RDN vs. sham-operated kidney after 21 days of HS diet. This work investigated the relationship between renal nerves and renal inflammation during Dahl SS hypertension. Contrary to our hypothesis, the results of this work suggest that immune cell infiltration in the kidney of Dahl SS rats is not mediated by the renal nerves.


Assuntos
Hipertensão/induzido quimicamente , Rim/inervação , Rim/patologia , Leucócitos/fisiologia , Cloreto de Sódio na Dieta/toxicidade , Animais , Pressão Sanguínea/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Endogâmicos Dahl
14.
Hypertension ; 73(2): 440-448, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30595125

RESUMO

Studies from our laboratory have revealed an important role for the maternal diet and the dietary protein source in the development of hypertension and renal injury in Dahl salt-sensitive (SS) rats. The current study sought to compare salt-induced hypertension, renal damage, and immune cell infiltration in the offspring of breeders fed either a casein- or gluten-based diet, with the hypothesis that offspring from gluten-fed breeders would fail to develop these SS phenotypes. When fed identical diets post-weaning, the F1 generation gluten offspring demonstrated lower mean arterial pressure (149.1±3.1 versus 162.5±5.8 mm Hg), albuminuria (166.2±34.6 versus 250.9±27.8 mg/day), and outer medullary protein casting (7.4±0.8% versus 13.1±1.3%) in response to high salt compared with the casein offspring (n=9-11). The gluten offspring also had fewer CD45+ leukocytes, CD11b/c+ monocytes/macrophages, CD3+ T cells, and CD45R+ B cells infiltrating the kidney. Analysis of the F2 generation gluten offspring also exhibited lower mean arterial pressure and renal damage compared with rats born from casein breeders (n=7-9), with no difference in renal immune cell infiltration. CMKLR1-receptor for the novel prohypertensive adipokine chemerin-was found via polymerase chain reaction array to be significantly upregulated (2.99-fold) in renal T cells isolated from F2 offspring of casein-fed versus gluten-fed parents. Furthermore, CMKLR1 inhibition via α-NETA (2-[α-naphthoyl] ethyltrimethylammonium iodide) treatment significantly attenuated renal immune cell infiltration, hypertension, and renal damage in SS rats fed high salt. Together, these data demonstrate the influence of the parental diet in determining the salt-induced hypertension, renal damage, and inflammatory phenotype of the offspring.


Assuntos
Proteínas na Dieta/administração & dosagem , Hipertensão/etiologia , Fenômenos Fisiológicos da Nutrição Materna , Receptores de Quimiocinas/fisiologia , Animais , Caseínas/administração & dosagem , Feminino , Glutens/administração & dosagem , Rim/imunologia , Rim/patologia , Masculino , Ratos , Ratos Endogâmicos Dahl , Receptores de Quimiocinas/antagonistas & inibidores , Índice de Gravidade de Doença
15.
Am J Physiol Regul Integr Comp Physiol ; 315(1): R28-R35, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29537860

RESUMO

The present study, performed in Dahl salt-sensitive (SS) and SS- Rag1-/- rats lacking T and B lymphocytes, tested the hypothesis that immune cells amplify salt-sensitive hypertension and kidney damage in response to a high-protein diet. After being weaned, SS and SS- Rag1-/- rats were placed on an isocaloric, 0.4% NaCl diet containing normal (18%) or high (30%) protein. At 9 wk of age, rats were switched to a 4.0% NaCl diet containing the same amount of dietary protein and maintained on the high-salt diet for 3 wk. After being fed the high-salt diet, SS rats fed high protein had amplified hypertension and albumin excretion (158.7 ± 2.6 mmHg and 140.8 ± 16.0 mg/day, respectively, means ± SE) compared with SS rats fed normal protein (139.4 ± 3.6 mmHg and 69.4 ± 11.3 mg/day). When compared with the SS rats, SS- Rag1-/- rats fed high protein were protected from exacerbated hypertension and albuminuria (142.9 ± 5.8 mmHg and 66.2 ± 10.8 mg/day). After 3 wk of the high-salt diet, there was a corresponding increase in total leukocyte infiltration (CD45+) in the kidneys of both strains fed high-protein diet. The SS- Rag1-/- rats fed high-protein diet had 74-86% fewer CD3+ T lymphocytes and CD45R+ B lymphocytes infiltrating the kidney versus SS rats, but there was no difference in the infiltration of CD11b/c+ monocytes and macrophages, suggesting that the protective effects observed in the SS- Rag1-/- rats are specific to the reduction of lymphocytes. With the SS- Rag1-/- rats utilized as a novel tool to explore the effects of lymphocyte deficiency, these results provide evidence that adaptive immune mechanisms contribute to the exacerbation of salt-induced hypertension and renal injury mediated by increased dietary protein intake.


Assuntos
Imunidade Adaptativa , Linfócitos B/imunologia , Pressão Sanguínea , Dieta Rica em Proteínas/efeitos adversos , Genes RAG-1 , Hipertensão/imunologia , Nefropatias/imunologia , Rim/imunologia , Cloreto de Sódio na Dieta , Linfócitos T/imunologia , Albuminúria/genética , Albuminúria/imunologia , Albuminúria/fisiopatologia , Animais , Linfócitos B/metabolismo , Complexo CD3/deficiência , Complexo CD3/genética , Modelos Animais de Doenças , Hipertensão/sangue , Hipertensão/genética , Hipertensão/fisiopatologia , Rim/metabolismo , Rim/fisiopatologia , Nefropatias/sangue , Nefropatias/genética , Nefropatias/fisiopatologia , Masculino , Ratos Endogâmicos Dahl , Ratos Transgênicos , Fatores de Risco , Linfócitos T/metabolismo
16.
Physiol Rep ; 6(6): e13655, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29595916

RESUMO

Evidence indicates the immune system is important in development of hypertension and kidney disease. In the Dahl Salt-Sensitive (SS) rat model, lymphocytes play a role in development of hypertension and kidney damage after increased sodium intake. Recent transcriptomic analyses demonstrate upregulation of the innate immune complement system in the kidney of Dahl SS rat fed a high-salt diet, leading us to hypothesize that inhibition of complement activation would attenuate development of hypertension and kidney damage. Male Dahl SS rats on a low salt (0.4% NaCl) diet were instrumented with telemeters for continuous monitoring of arterial blood pressure. Animals received saline vehicle (Control) or sCR1, a soluble form of endogenous Complement Receptor 1 (CR1; CD35) that inhibits complement activation. At Day 0, rats were switched to high salt (4.0% NaCl) diet and assigned to sCR1 (15 mg/kg per day) or Control groups with daily ip injections either days 1-7 or days 14-18. Urine was collected overnight for determination of albumin excretion. Treatment with sCR1, either immediately after high-salt diet was initiated, or at days 14-18, did not alter development of hypertension or albuminuria. The sCR1 dose effectively inhibited total hemolytic complement activity as well as C3a generation. High salt caused an increase in message for complement regulator Cd59, with minimal change in Crry that controls the C3 convertase. Thus, innate immune complement activation in the circulation is not critical for development of hypertension and kidney damage due to increased sodium intake, and therapeutic manipulation of the complement system is not indicated in salt-sensitive hypertension.


Assuntos
Proteínas do Sistema Complemento/imunologia , Hipertensão/imunologia , Nefropatias/imunologia , Animais , Masculino , Ratos , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta/toxicidade
17.
Am J Physiol Renal Physiol ; 311(3): F555-61, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27279492

RESUMO

Immune cells in the kidney are implicated in the development of hypertension and renal damage in the Dahl salt-sensitive (SS) rat. Interestingly, interleukin 6 (IL-6) mRNA is 54-fold higher in T-lymphocytes isolated from the kidney compared with circulating T-lymphocytes. The present experiments assessed the role of IL-6 in the development of SS hypertension by treating rats (n = 13-14/group) with an IL-6 neutralizing antibody or normal IgG during an 11-day period of high-salt (4.0% NaCl chow) intake. The mean arterial pressure (MAP) and urine albumin excretion rates (Ualb) were not different between the groups fed low salt (0.4% NaCl). Following 11 days of drug treatment and high salt, however, the rats receiving anti-IL-6 demonstrated a 47% reduction of IL-6 in the renal medulla compared with control SS. Moreover, the increase in MAP following 11 days of high-NaCl intake was significantly attenuated in SS administered anti-IL-6 compared with the control group (138 ± 3 vs. 149 ± 3 mmHg) as was the salt-induced increase in Ualb and glomerular and tubular damage. To investigate potential mechanisms of action, a flow cytometric analysis of immune cells in the kidney (n = 8-9/group) demonstrated that the total number of monocytes and macrophages was significantly lower in the treatment vs. the control group. The total number of T- and B-lymphocytes in the kidneys was not different between groups. These studies indicate that IL-6 production may participate in the development of SS hypertension and end-organ damage by mediating increased infiltration or proliferation of macrophages into the kidney.


Assuntos
Anticorpos Neutralizantes/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Interleucina-6/imunologia , Nefropatias/tratamento farmacológico , Medula Renal/efeitos dos fármacos , Animais , Anticorpos Neutralizantes/farmacologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Citometria de Fluxo , Hipertensão/metabolismo , Hipertensão/patologia , Interleucina-6/metabolismo , Nefropatias/metabolismo , Nefropatias/patologia , Medula Renal/metabolismo , Medula Renal/patologia , Masculino , Ratos , Ratos Endogâmicos Dahl , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
18.
Hypertension ; 65(5): 1111-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25776069

RESUMO

Human genome-wide association studies have linked SH2B adaptor protein 3 (SH2B3, LNK) to hypertension and renal disease, although little experimental investigation has been performed to verify a role for SH2B3 in these pathologies. SH2B3, a member of the SH2B adaptor protein family, is an intracellular adaptor protein that functions as a negative regulator in many signaling pathways, including inflammatory signaling processes. To explore a mechanistic link between SH2B3 and hypertension, we targeted the SH2B3 gene for mutation on the Dahl salt-sensitive (SS) rat genetic background with zinc-finger nucleases. The resulting mutation was a 6-bp, in-frame deletion within a highly conserved region of the Src homology 2 (SH2) domain of SH2B3. This mutation significantly attenuated Dahl SS hypertension and renal disease. Also, infiltration of leukocytes into the kidneys, a key mediator of Dahl SS pathology, was significantly blunted in the Sh2b3(em1Mcwi) mutant rats. To determine whether this was because of differences in immune signaling, bone marrow transplant studies were performed in which Dahl SS and Sh2b3(em1Mcwi) mutants underwent total body irradiation and were then transplanted with Dahl SS or Sh2b3(em1Mcwi) mutant bone marrow. Rats that received Sh2b3(em1Mcwi) mutant bone marrow had a significant reduction in mean arterial pressure and kidney injury when placed on a high salt diet (4% NaCl). These data further support a role for the immune system as a modulator of disease severity in the pathogenesis of hypertension and provide insight into inflammatory mechanisms at play in human hypertension and renal disease.


Assuntos
DNA/genética , Hipertensão/genética , Inflamação/genética , Mutação , Proteínas/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Pressão Sanguínea , Eletroforese em Gel de Poliacrilamida , Estudo de Associação Genômica Ampla , Hipertensão/imunologia , Hipertensão/metabolismo , Imunidade Celular , Inflamação/imunologia , Inflamação/metabolismo , Rim/metabolismo , Rim/patologia , Proteínas/metabolismo , Ratos , Ratos Endogâmicos Dahl , Ratos Mutantes , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Linfócitos T/imunologia
19.
Arterioscler Thromb Vasc Biol ; 34(7): 1486-94, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24790136

RESUMO

OBJECTIVE: Small GTPase Ras-related protein 1 (Rap1b) controls several basic cellular phenomena, and its deletion in mice leads to several cardiovascular defects, including impaired adhesion of blood cells and defective angiogenesis. We found that Rap1b(-/-) mice develop cardiac hypertrophy and hypertension. Therefore, we examined the function of Rap1b in regulation of blood pressure. APPROACH AND RESULTS: Rap1b(-/-) mice developed cardiac hypertrophy and elevated blood pressure, but maintained a normal heart rate. Correcting elevated blood pressure with losartan, an angiotensin II type 1 receptor antagonist, alleviated cardiac hypertrophy in Rap1b(-/-) mice, suggesting a possibility that cardiac hypertrophy develops secondary to hypertension. The indices of renal function and plasma renin activity were normal in Rap1b(-/-) mice. Ex vivo, we examined whether the effect of Rap1b deletion on smooth muscle-mediated vessel contraction and endothelium-dependent vessel dilation, 2 major mechanisms controlling basal vascular tone, was the basis for the hypertension. We found increased contractility on stimulation with a thromboxane analog or angiotensin II or phenylephrine along with increased inhibitory phosphorylation of myosin phosphatase under basal conditions consistent with elevated basal tone and the observed hypertension. Cyclic adenosine monophosphate-dependent relaxation in response to Rap1 activator, Epac, was decreased in vessels from Rap1b(-/-) mice. Defective endothelial release of dilatory nitric oxide in response to elevated blood flow leads to hypertension. We found that nitric oxide-dependent vasodilation was significantly inhibited in Rap1b-deficient vessels. CONCLUSIONS: This is the first report to indicate that Rap1b in both smooth muscle and endothelium plays a key role in maintaining blood pressure by controlling normal vascular tone.


Assuntos
Pressão Sanguínea , Células Endoteliais/enzimologia , Hipertensão/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Vasoconstrição , Vasodilatação , Proteínas rap de Ligação ao GTP/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Cardiomegalia/enzimologia , Cardiomegalia/etiologia , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Cardiomegalia/prevenção & controle , Células Cultivadas , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Feminino , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/etiologia , Hipertensão/genética , Hipertensão/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Proteínas rap de Ligação ao GTP/deficiência , Proteínas rap de Ligação ao GTP/genética
20.
Physiol Rep ; 2(1): e00199, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24744878

RESUMO

Transient receptor potential vanilloid type 4 (TRPV4) is an endothelial Ca(2+) entry channel contributing to endothelium-mediated dilation in conduit and resistance arteries. We investigated the role of TRPV4 in the regulation of blood pressure and endothelial function under hypertensive conditions. TRPV4-deficient (TRPV4(-/-)) and wild-type (WT) control mice were given l-NAME (0.5 g/L) in drinking water for 7 days or subcutaneously infused with angiotensin (Ang) II (600 ng/kg per minute) for 14 days, and blood pressure measured by radiotelemetry. TRPV4(-/-) mice had a lower baseline mean arterial pressure (MAP) (12-h daytime MAP, 94 ± 2 vs. 99 ± 2 mmHg in WT controls). l-NAME treatment induced a slightly greater increase in MAP in TRPV4(-/-) mice (day 7, 13 ± 4%) compared to WT controls (6 ± 2%), but Ang II-induced increases in MAP were similar in TRPV4(-/-) and WT mice (day 14, 53 ± 6% and 37 ± 11%, respectively, P < 0.05). Chronic infusion of WT mice with Ang II reduced both acetylcholine (ACh)-induced dilation (dilation to 10(-5) mol/L ACh, 71 ± 5% vs. 92 ± 2% of controls) and the TRPV4 agonist GSK1016790A-induced dilation of small mesenteric arteries (10(-8) mol/L GSK1016790A, 14 ± 5% vs. 77 ± 7% of controls). However, Ang II treatment did not affect ACh dilation in TRPV4(-/-) mice. Mechanistically, Ang II did not significantly alter either TRPV4 total protein expression in mesenteric arteries or TRPV4 agonist-induced Ca(2+) response in mesenteric endothelial cells in situ. These results suggest that TRPV4 channels play a minor role in blood pressure regulation in l-NAME- but not Ang II-induced hypertension, but may be importantly involved in Ang II-induced endothelial dysfunction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...